Repositioning of FDA-Approved antifungal agents to interrogate Acyl-CoA synthetase long chain family member 4 (ACSL4) in ferroptosis

Biochem Pharmacol. 2022 Oct:204:115239. doi: 10.1016/j.bcp.2022.115239. Epub 2022 Sep 6.

Abstract

Ferroptosis, first coined in 2012, is an iron-dependent regulated cell death (RCD) characterized by the accumulation of lipid peroxides to toxic levels. This mechanism is currently being evaluated as a target for a variety of diseases offering new opportunities for drug design and development. Recent reports uncovered acyl-CoA synthetase long-chain 4 (ACSL4) as a critical contributor to ferroptosis execution. Therefore, ACSL4 inhibitors are emerging as attractive anti-ferroptotic agents. Herein, we developed a robust screening cascade with orthogonal biophysical and biochemical techniques to identify original human ACSL4 inhibitors. By screening an FDA-approved drug library, we were able to identify and validate new inhibitors with micromolar-range activities against ACSL4. With an IC50 of 280 nM against hACSL4, antifungal agent sertaconazole is to our knowledge, the most potent ACSL4 inhibitor identified so far. In addition, sertaconazole significantly reduced lipid peroxidation and ferroptosis in human differentiated dopaminergic neurons (Lund human mesencephalic LUHMES cells), demonstrating that it is a valuable chemical tool for further investigating the role of ACSL4 in ferroptosis. This study highlights the phenethyl-imidazole scaffold as a novel and promising starting point for the development of anti-ferroptotic agents targeting ACSL4.

Keywords: ACSL3; ACSL4; Drug repositioning; Econazole; Ferroptosis; Lipid peroxidation; Rosiglitazone; Screening; Sertaconazole; acyl-CoA synthetase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antifungal Agents / pharmacology
  • Coenzyme A
  • Coenzyme A Ligases / metabolism
  • Drug Repositioning
  • Ferroptosis*
  • Humans
  • Imidazoles
  • Iron
  • Lipid Peroxides
  • Thiophenes

Substances

  • Antifungal Agents
  • Imidazoles
  • Lipid Peroxides
  • Thiophenes
  • sertaconazole
  • Iron
  • Coenzyme A Ligases
  • Coenzyme A