QCforever: A Quantum Chemistry Wrapper for Everyone to Use in Black-Box Optimization

J Chem Inf Model. 2022 Sep 26;62(18):4427-4434. doi: 10.1021/acs.jcim.2c00812. Epub 2022 Sep 8.

Abstract

To obtain observable physical or molecular properties such as ionization potential and fluorescent wavelength with quantum chemical (QC) computation, multi-step computation manipulated by a human is required. Hence, automating the multi-step computational process and making it a black box that can be handled by anybody are important for effective database construction and fast realistic material design through the framework of black-box optimization where machine learning algorithms are introduced as a predictor. Here, we propose a Python library, QCforever, to automate the computation of some molecular properties and chemical phenomena induced by molecules. This tool just requires a molecule file for providing its observable properties, automating the computation process of molecular properties (for ionization potential, fluorescence, etc.) and output analysis for providing their multi-values for evaluating a molecule. Incorporating the tool in black-box optimization, we can explore molecules that have properties we desired within the limitation of QC computation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Databases, Factual
  • Humans
  • Machine Learning*