New Theoretical Infrared Line List for the Methyl Radical with Accurate Vibrational Band Origins from High-Level Ab Initio Calculations

J Phys Chem A. 2022 Sep 22;126(37):6429-6442. doi: 10.1021/acs.jpca.2c04822. Epub 2022 Sep 7.

Abstract

In the present work, high-level ab initio calculations were carried out for the ground electronic state of the methyl radical (CH3). Dunning's augmented correlation-consistent orbital basis sets were employed up to the quintuple-ζ valence quality with the core-valence electron correlation [aug-cc-pCV5Z] combined with the single- and double-excitation unrestricted coupled-cluster approach with a perturbative treatment of triple excitations [RHF-UCCSD(T)]. The explicitly correlated version of the coupled-cluster approach [RHF-UCCSD(T)-F12x{x = a, b}] was additionally applied with the core-valence cc-pCVQZ-F12 basis set in order to study convergence with respect to the basis set size. The contributions beyond the coupled-cluster level of the theory like Douglas-Kroll-Hess scalar relativistic Hamiltonian, diabatic Born-Oppenheimer corrections, and high-order electronic correlations have been included into the ab initio potential energy surfaces (PESs). It is shown that the theoretical band origins of CH3 converge gradually to the experimental values when applying the ab initio PESs using the aug-cc-pCVXZ [X = T, Q, and 5] basis sets. For the first time, all available experimental band origins of the gaseous CH3 are reproduced within an accuracy of 0.2 cm-1 using a newly developed PES extrapolated to the complete basis set limit [CBS(TQ5Z)]. The reached accuracy is one order of magnitude better than that of the best available calculations. A new theoretical infrared line list was generated for astrophysical applications using an ab initio dipole moment surface computed at the RHF-UCCSD(T)/aug-cc-pCVQZ level of the theory. The manifestation of a large-amplitude motion in CH3 is also discussed.