Long Noncoding RNA LINC00473 Ameliorates Depression-Like Behaviors in Female Mice by Acting as a Molecular Sponge to Regulate miR-497-5p/BDNF Axis

Comput Math Methods Med. 2022 Aug 28:2022:4244425. doi: 10.1155/2022/4244425. eCollection 2022.

Abstract

Background: Depression was a common life-threatening psychiatric disorder and occurs more frequently in women than in men. Long noncoding RNAs (lncRNAs), such as LINC00473, had been reported to be involved in the progression of depression.

Methods: Chronic unpredictable moderate stress in mice (CUMS) was applied to construct a depression model. Subsequently, RT-qPCR was applied to check the level of LINC00473 and microRNA-497-5p (miR-497-5p) in the hippocampal region of the mice induced by CUMS. CUMS mice were injected with lentiviral vectors of LINC00473 (LV-LINC00473), miR-497-5p inhibitor, short hairpin- (sh-) brain-derived neurotrophic factor (sh-BDNF), or miR-497-5p mimic to evaluate depressive behaviors, including sucrose preference test, forced swim test, elevated plus maze, and tail suspension test. Moreover, the production of hypothalamic neurotransmitters was assessed with the usage of ELISA kits. Dual-luciferase reporter assay, RNA pull-down, and RIP analysis were performed to measure the relationship between miR-497-5p and LINC00473 or BDNF. Further, western blot was employed to determine the protein level of BDNF.

Results: We discovered that LINC00473 level was downregulated in the female mice with depression, but not in male mice. Besides, the depressive behaviors induced by CUMS in mice, including the decrease of sucrose preference and time in open arm, as well as the increase of immobility time and swimming resting time were all ameliorated by LINC00473 overexpression. Moreover, the concentration of neurotransmitters was decreased in CUMS-induced mouse hypothalamus, which was blocked by LV-LINC00473 lentiviral vector administration. Mechanistically, LINC00473 directly targeted miR-497-5p. Absence of miR-497-5p revealed the antidepression effects on CUMS-induced mice, and miR-497-5p upregulation could counter the antidepressive impacts of LINC00473 upregulation on CUMS-induced mice. Furthermore, LINC00473 could target miR-497-5p to modulate BDNF level. Knockdown of BDNF could abrogate the improving influences of miR-497-5p suppression on CUMS-induced depression.

Conclusions: LINC00473 ameliorated CUMS-caused depression by encouraging BDNF expression via binding to miR-497-5p, which might provide a potential therapeutic target for depression in females.

Publication types

  • Retracted Publication

MeSH terms

  • Animals
  • Brain-Derived Neurotrophic Factor* / genetics
  • Brain-Derived Neurotrophic Factor* / metabolism
  • Cell Proliferation / genetics
  • Depression / genetics
  • Female
  • Humans
  • Male
  • Mice
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • RNA, Long Noncoding* / genetics
  • RNA, Long Noncoding* / metabolism
  • Sucrose

Substances

  • Bdnf protein, mouse
  • Brain-Derived Neurotrophic Factor
  • MicroRNAs
  • RNA, Long Noncoding
  • mirn497 microRNA, mouse
  • Sucrose