Energy landscapes of rotary DNA origami devices determined by fluorescence particle tracking

Biophys J. 2022 Dec 20;121(24):4849-4859. doi: 10.1016/j.bpj.2022.08.046. Epub 2022 Sep 7.

Abstract

Biomolecular nanomechanical devices are of great interest as tools for the processing and manipulation of molecules, thereby mimicking the function of nature's enzymes. DNA nanotechnology provides the capability to build molecular analogs of mechanical machine elements such as joints and hinges via sequence-programmable self-assembly, which are otherwise known from traditional mechanical engineering. Relative to their size, these molecular machine elements typically do not reach the same relative precision and reproducibility that we know from their macroscopic counterparts; however, as they are scaled down to molecular sizes, physical effects typically not considered by mechanical engineers such as Brownian motion, intramolecular forces, and the molecular roughness of the devices begin to dominate their behavior. In order to investigate the effect of different design choices on the roughness of the mechanical energy landscapes of DNA nanodevices in greater detail, we here study an exemplary DNA origami-based structure, a modularly designed rotor-stator arrangement, which resembles a rotatable nanorobotic arm. Using fluorescence tracking microscopy, we follow the motion of individual rotors and record their corresponding energy landscapes. We then utilize the modular construction of the device to exchange its constituent parts individually and systematically test the effect of different design variants on the movement patterns. This allows us to identify the design parameters that most strongly affect the shape of the energy landscapes of the systems. Taking into account these insights, we are able to create devices with significantly flatter energy landscapes, which translates to mechanical nanodevices with improved performance and behaviors more closely resembling those of their macroscopic counterparts.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA* / chemistry
  • Nanostructures* / chemistry
  • Nanotechnology
  • Nucleic Acid Conformation
  • Physical Phenomena
  • Reproducibility of Results

Substances

  • DNA