Novel antitumor therapeutic strategy using CD4+ T cell-derived extracellular vesicles

Biomaterials. 2022 Oct:289:121765. doi: 10.1016/j.biomaterials.2022.121765. Epub 2022 Aug 31.

Abstract

Extracellular vesicles (EVs) mediate cell-cell crosstalk by carrying bioactive molecules derived from cells. Recently, immune cell-derived EVs have been reported to regulate key biological functions such as tumor progression. CD4+ T cells orchestrate overall immunity; however, the biological role of their EVs is unclear. This study reveals that EVs derived from CD4+ T cells increase the antitumor response of CD8+ T cells by enhancing their proliferation and activity without affecting regulatory T cells (Tregs). Moreover, EVs derived from interleukin-2 (IL2)-stimulated CD4+ T cells induce a more enhanced antitumor response of CD8+ T cells compared with that of IL2-unstimulated CD4+ T cell-derived EVs. Mechanistically, miR-25-3p, miR-155-5p, miR-215-5p, and miR-375 within CD4+ T cell-derived EVs are responsible for the induction of CD8+ T cell-mediated antitumor responses. In a melanoma mouse model, the EVs potently suppress tumor growth through CD8+ T cell activation. This study demonstrates that the EVs, in addition to IL2, are important mediators between CD4+ and CD8+ T cells. Furthermore, unlike IL2, clinically used as an antitumor agent, CD4+ T cell-derived EVs stimulate CD8+ T cells without activating Tregs. Therefore, CD4+ T cell-derived EVs may provide a novel direction for cancer immunotherapy by inducing a CD8+ T cell-mediated antitumor response.

Keywords: CD4(+) T cells; CD8(+) T cells; Cancer immunotherapy; Extracellular vesicles; Interleukin-2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CD4-Positive T-Lymphocytes
  • CD8-Positive T-Lymphocytes
  • Extracellular Vesicles*
  • Interleukin-2
  • Mice
  • MicroRNAs*
  • T-Lymphocytes, Regulatory

Substances

  • Interleukin-2
  • MicroRNAs