The long-term effect of removing the UV-protectant usnic acid from the thalli of the lichen Cladonia foliacea

Mycol Prog. 2022;21(9):83. doi: 10.1007/s11557-022-01831-y. Epub 2022 Sep 1.

Abstract

Terricolous lichens are abundant in semi-arid areas, where they are exposed to high irradiation. Photoprotection is essential for the algae as the photobiont provides the primer carbon source for both symbionts. The UV-protectant lichen metabolites and different quenching procedures of the alga ensure adequate photoprotection. Since the long-term effect of diminishing UV-protectant lichen metabolites is unknown, a major part of lichen secondary metabolites was removed from Cladonia foliacea thalli by acetone rinsing, and the lichens were then maintained under field conditions to investigate the effect on both symbionts for 3 years. Our aim was to determine if the decreased level of UV-protectant metabolites caused an elevated photoprotection in the algae and to reveal the dynamics of production of the metabolites. Photosynthetic activity and light protection were checked by chlorophyll a fluorescence kinetics measurements every 6 months. The concentrations of fumarprotocetraric and usnic acids were monitored by chromatographic methods. Our results proved that seasonality had a more pronounced effect than that of acetone treatment on the function of lichens over a long-term scale. Even after 3 years, the acetone-treated thalli contained half as much usnic acid as the control thalli, and the level of photoprotection remained unchanged in the algae. However, the amount of available humidity was a more critical limiting environmental factor than the amount of incoming irradiation affecting usnic acid production. The lichenicolous fungus Didymocyrtis cladoniicola became relatively more abundant in the acetone-treated samples than in the control samples, indicating a slight change caused by the treatment.

Supplementary information: The online version contains supplementary material available at 10.1007/s11557-022-01831-y.

Keywords: Acetone rinsing; Lichen-forming fungi; Lichenicolous fungi; Photoprotection; Seasonality; Symbiosis.