Massively parallel genomic perturbations with multi-target CRISPR interrogates Cas9 activity and DNA repair at endogenous sites

Nat Cell Biol. 2022 Sep;24(9):1433-1444. doi: 10.1038/s41556-022-00975-z. Epub 2022 Sep 5.

Abstract

Here we present an approach that combines a clustered regularly interspaced short palindromic repeats (CRISPR) system that simultaneously targets hundreds of epigenetically diverse endogenous genomic sites with high-throughput sequencing to measure Cas9 dynamics and cellular responses at scale. This massive multiplexing of CRISPR is enabled by means of multi-target guide RNAs (mgRNAs), degenerate guide RNAs that direct Cas9 to a pre-determined number of well-mapped sites. mgRNAs uncovered generalizable insights into Cas9 binding and cleavage, revealing rapid post-cleavage Cas9 departure and repair factor loading at protospacer adjacent motif-proximal genomic DNA. Moreover, by bypassing confounding effects from guide RNA sequence, mgRNAs unveiled that Cas9 binding is enhanced at chromatin-accessible regions, and cleavage by bound Cas9 is more efficient near transcribed regions. Combined with light-mediated activation and deactivation of Cas9 activity, mgRNAs further enabled high-throughput study of the cellular response to double-strand breaks with high temporal resolution, revealing the presence, extent (under 2 kb) and kinetics (~1 h) of reversible DNA damage-induced chromatin decompaction. Altogether, this work establishes mgRNAs as a generalizable platform for multiplexing CRISPR and advances our understanding of intracellular Cas9 activity and the DNA damage response at endogenous loci.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • CRISPR-Cas Systems*
  • Chromatin / genetics
  • DNA / metabolism
  • DNA Repair / genetics
  • Genomics
  • RNA, Guide, CRISPR-Cas Systems* / genetics
  • RNA, Guide, CRISPR-Cas Systems* / metabolism

Substances

  • Chromatin
  • RNA, Guide, CRISPR-Cas Systems
  • DNA