Screening and analysis of key genes in the biological behavior of bone mesenchymal stem cells seeded on gradient nanostructured titanium compared with native pure Ti

J Biomater Appl. 2023 Jan;37(6):1086-1101. doi: 10.1177/08853282221125036. Epub 2022 Sep 5.

Abstract

Titanium (Ti) and Ti-based alloy materials are ideal brackets that restore bone defect, and the mechanism of related genes inducing bone mesenchymal stem cells (BMSCs) to osteogenic differentiation is currently a hot research topic. In order to screen key genes of BMSCs during the osteogenic expression process, we acquired data sets (GSE37237 and GSE84500) which were in the database Gene Expression Omnibus (GEO). Investigations on differentially expressed genes (DEGs) and their enrichment of functions were conducted. We constructed relative protein-protein interaction (PPI) network by using Search Tool for the Retrieval of Interacting Genes (STRING) and visualized the expression of DEGs with Cytoscape. A total of 279 DEGs were discerned, which could be divided into 177 down regulated genes and 102 up regulated genes. In addition, the DEGs' enrichment and pathways included regulation of actin cytoskeleton, inflammatory mediator regulation of transient receptor potential (TRP) channels, peroxisome proliferator-activated receptors (PPAR) pathway, cell cycle, Rheumatoid arthritis, mitogen-activated protein kinases (MAPK) signaling pathway and Ras signaling pathway ect. It showed that 10 notable up regulated genes were mainly in AMP-activated protein kinase (AMPK) pathway. Then we used a technology named surface mechanical attrition treatment (SMAT) to prepare gradient nanostructured (GNS) surface Ti and seeded well-growing BMSCs on the surface of SMAT Ti and native pure Ti. Cell Counting Kits-8 (CCK-8), apoptosis experiment, immunofluorescence technology and staining experiments for alka-line phosphatase (ALP) and alizarin red staining (ARS) were used to research the proliferation, adhesion and differentiation ability of BMSCs seeded on SMAT Ti compared with native pure Ti. We used quantitative real-time PCR (qRT-PCR) technology so as to verify the expression of the most significant 5 genes. In summary, these results indicated novel point of views into candidate genes and potential mechanism for the further study of BMSCs' behaviors seeded on SMAT Ti.

Keywords: Surface mechanical attrition treatment; bone mesenchymal stem cells; differently expressed gene; functional enrichment analysis; osteogenic differentiation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bone and Bones
  • Cell Differentiation / genetics
  • Cells, Cultured
  • Mesenchymal Stem Cells*
  • Osteogenesis* / genetics
  • Titanium / pharmacology

Substances

  • Titanium