Inhibition Of Tau Protein Aggregation By a Chaperone-like β-Boswellic Acid Conjugated To Gold Nanoparticles

ACS Omega. 2022 Aug 18;7(34):30347-30358. doi: 10.1021/acsomega.2c03616. eCollection 2022 Aug 30.

Abstract

A potential therapeutic strategy to inhibit tau protein aggregation in neurons has substantial effects on preventing or controlling Alzheimer's disease (AD). In this work, we designed a covalent and noncovalent conjugation of β-boswellic acid (BA) to gold nanoparticles (GNPs). We provided the opportunity to investigate the effect of the surface composition of BA-GNPs on the aggregation of the tau protein 1N/4R isoform in vitro. HR-TEM and FESEM micrographs revealed that GNPs were spherical and uniform, smaller than 25 nm. According to UV-visible and FTIR data, BA was successfully conjugated to GNPs. The finding illustrates the effect of the surface charge, size, and hydrophobicity of BA-GNPs on the kinetics of tau protein aggregation. The size and surface area of U-G-BA demonstrated that inhibited tau aggregation more effectively than covalently linked BA. The proposed method for preventing tau aggregation was monomer reduction. At the same time, a chaperone-like feature of GNP-BA while sustaining a tau native structure prevented the additional formation of fibrils. Overall, this study provides insight into the interaction of GNP-BAs with a monomer of tau protein and may suggest novel future therapies for AD.