Superhydrophobic and Breathable Polyacrylonitrile/Silica/Perfluoroalkyl Ethyl Methacrylate Nanofiber Membranes Prepared by Solution Blow Spinning

ACS Omega. 2022 Aug 18;7(34):30333-30346. doi: 10.1021/acsomega.2c03602. eCollection 2022 Aug 30.

Abstract

Hydrophobic and breathable nanofiber membranes have attracted considerable attention owing to their applications in various fields. In this study, we fabricated superhydrophobic and breathable nanofiber membranes using solution blow spinning. We optimized the spinning process parameters by analyzing their effects on the structure and properties of the nanofiber membranes. And the nanofiber membranes achieved superhydrophobicity through hydrophobic modification treatment. The average fiber diameter and pore size of the obtained membrane were 0.51 and 13.65 μm, respectively. The membranes exhibited superhydrophobicity, breathability, and mechanical properties: water vapor transmission of 12.88 kg/m2/day, air permeability of 10.97 mm/s, water contact angle of 150.92°, maximum tensile stress of 5.36 MPa, and maximum elongation at break of 12.27%. Additionally, we studied the impact of heat treatment on the nanofiber membranes. The membranes prepared in this study can be applied to protective garments, outdoor clothing, antifouling materials, etc. Because of its relatively higher production efficiency, solution blow spinning is a prospective method for producing functional nanofibers.