Comparative maternal protein profiling of mouse biparental and uniparental embryos

Gigascience. 2022 Sep 3:11:giac084. doi: 10.1093/gigascience/giac084.

Abstract

Background: Maternal proteins have important roles during early embryonic development. However, our understanding of maternal proteins is still very limited. The integrated analysis of mouse uniparental (parthenogenetic) and biparental (fertilized) embryos at the protein level creates a protein expression landscape that can be used to explore preimplantation mouse development.

Results: Using label-free quantitative mass spectrometry (MS) analysis, we report on the maternal proteome of mouse parthenogenetic embryos at pronucleus, 2-cell, 4-cell, 8-cell, morula, and blastocyst stages and highlight dynamic changes in protein expression. In addition, comparison of proteomic profiles of parthenogenotes and fertilized embryos highlights the different fates of maternal proteins. Enrichment analysis uncovered a set of maternal proteins that are strongly correlated with the subcortical maternal complex, and we report that in parthenogenotes, some of these maternal proteins escape the fate of protein degradation. Moreover, we identified a new maternal factor-Fbxw24, and highlight its importance in early embryonic development. We report that Fbxw24 interacts with Ddb1-Cul4b and may regulate maternal protein degradation in mouse.

Conclusions: Our study provides an invaluable resource for mechanistic analysis of maternal proteins and highlights the role of the novel maternal factor Fbw24 in regulating maternal protein degradation during preimplantation embryo development.

Keywords: early embryo; maternal protein; mouse; parthenogenesis; proteome.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blastocyst / metabolism
  • Embryonic Development
  • Female
  • Mice
  • Parthenogenesis*
  • Pregnancy
  • Proteome / metabolism
  • Proteomics*

Substances

  • Proteome