Z-scheme CoAl-layereddoublehydroxide/indium vanadate heterojunction for enhanced and highly selective photocatalytic reduction of carbon dioxide to carbon monoxide

J Colloid Interface Sci. 2023 Jan;629(Pt A):92-102. doi: 10.1016/j.jcis.2022.08.148. Epub 2022 Aug 28.

Abstract

Development of efficient photocatalysts is essential for carbon dioxide (CO2) photocatalytic reduction. In this study, Z-scheme CoAl-layered double hydroxide (LDH)/indium vanadate (InVO4) heterojunction photocatalysts were synthesized using hydrothermal method, and their performance toward CO2 reduction and mechanism were determined. Results of characterizations showed that the CoAl-LDH/InVO4-30 exhibited desired morphology, the most efficient photogenerated carriers separation and charge transfer, and the highest photocurrent response. X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) manifested that charge transfer of the CoAl-LDH/InVO4 conformed to Z-scheme mechanism. The CoAl-LDH/InVO4-30 exhibited the highest carbon monoxide (CO) yield of 174.4 μmol g-1 within 2 h of reaction, which was 2.46 and 9.79 times of pure CoAl-LDH and InVO4, respectively. The CO selectivity was up to nearly 100%. Moreover, in-situ fourier transform infrared spectroscopy (ISFT-IR) demonstrated that bicarbonate (HCO3*) and carboxylate (COOH*) were the main intermediates during the CO2 reduction process, and possible CO2 reduction pathways were proposed. This work provides a reference for construction of Z-scheme LDH-based heterojunctions for efficient CO2 photoreduction.

Keywords: Band structure; Intermediates and mechanism; Photocatalytic CO(2) reduction; Z-scheme CoAl-LDH/InVO(4) heterojunction.