Phosphatidylinositol 4,5-bisphosphate-specific phospholipase C β1 selectively binds dipalmitoyl and distearoyl phosphatidic acids via Lys946 and Lys951

Lipids. 2022 Nov;57(6):289-302. doi: 10.1002/lipd.12356. Epub 2022 Sep 2.

Abstract

Phospholipase C (PLC) β1 hydrolyzes 1-stearoyl-2-arachidonoyl (18:0/20:4)-phosphatidylinositol (PtdIns) 4,5-bisphosphate to produce diacylglycerol, which is converted to phosphatidic acid (PtdOH), in the PtdIns cycle and plays pivotal roles in intracellular signal transduction. The present study identified PLCβ1 as a PtdOH-binding protein using PtdOH-containing liposomes. Moreover, the comparison of the binding of PLCβ1 to various PtdOH species, including 14:0/14:0-PtdOH, 16:0/16:0-PtdOH, 16:0/18:1-PtdOH, 18:0/18:1-PtdOH, 18:0/18:0-PtdOH, 18:1/18:1-PtdOH, 18:0/20:4-PtdOH, and 18:0/22:6-PtdOH, indicated that the interaction of PLCβ1 with 16:0/16:0-PtdOH was the strongest. The PLCβ1-binding activity of 18:0/18:0-PtdOH was almost the same as the binding activity of 16:0/16:0-PtdOH. Furthermore, the binding of PLCβ1 to 16:0/16:0-PtdOH was substantially stronger than 16:0/16:0-phosphatidylserine, 16:0/16:0/16:0/16:0-cardiolipin, 16:0/16:0-PtdIns, and 18:0/20:4-PtdIns. We revealed that a PLCβ1 mutant whose Lys946 and Lys951 residues were replaced with Glu (PLCβ1-KE) did not interact with 16:0/16:0-PtdOH and failed to localize to the plasma membrane in Neuro-2a cells. Retinoic acid-dependent increase in neurite length and numbers was significantly inhibited in PLCβ1-expressing cells; however, this considerable attenuation was not detected in the cells expressing PLCβ1-KE. Overall, these results strongly suggest that PtdOHs containing only saturated fatty acids, including 16:0/16:0-PtdOH, which are not derived from the PtdIns cycle, selectively bind to PLCβ1 and regulate its function.

Keywords: diacylglycerol; diacylglycerol kinase; phosphatidic acid; phospholipase C; saturated fatty acid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Membrane / metabolism
  • Inositol Phosphates
  • Phosphatidic Acids* / metabolism
  • Phosphatidylinositols* / metabolism
  • Phospholipase C beta

Substances

  • Phosphatidic Acids
  • Phosphatidylinositols
  • Phospholipase C beta
  • Inositol Phosphates