Non-Hermitian Physics without Gain or Loss: The Skin Effect of Reflected Waves

Phys Rev Lett. 2022 Aug 19;129(8):086601. doi: 10.1103/PhysRevLett.129.086601.

Abstract

Physically, one tends to think of non-Hermitian systems in terms of gain and loss: the decay or amplification of a mode is given by the imaginary part of its energy. Here, we introduce an alternative avenue to the realm of non-Hermitian physics, which involves neither gain nor loss. Instead, complex eigenvalues emerge from the amplitudes and phase differences of waves backscattered from the boundary of insulators. We show that for any strong topological insulator in a Wigner-Dyson class, the reflected waves are characterized by a reflection matrix exhibiting the non-Hermitian skin effect. This leads to an unconventional Goos-Hänchen effect: due to non-Hermitian topology, waves undergo a lateral shift upon reflection, even at normal incidence. Going beyond systems with gain and loss vastly expands the set of experimental platforms that can access non-Hermitian physics and show signatures associated with non-Hermitian topology.