[Evaluation of climate regulation service at prefecture-level city: A case study of Fuzhou City, China]

Ying Yong Sheng Tai Xue Bao. 2022 Jul;33(7):1966-1974. doi: 10.13287/j.1001-9332.202207.021.
[Article in Chinese]

Abstract

Ecosystem services are the bridge between ecosystem functions and human welfare. Climate regulation service (CRS) has an extremely important role in ecosystem services. It is important to conduct a comprehensive assessment based on the whole process of CRS occurrence for scientific assessment of ecosystem services. With Fuzhou City as a case, we carried out the assessment of CRS at the local and municipal scales, and analyzed the spatial and temporal variations of CRS at the administrative unit and land use and land cover scales. The results showed that the aggregated physical capacity of CRS in Fuzhou City was 4.01×1012 MJ (monetary value 613.944 billion yuan, GDP 561.808 billion yuan) and 4.66×1012 MJ (monetary value 714.002 billion yuan, GDP 785.681 billion yuan) in 2015 and 2018, respectively, and that the monetary value of CRS was roughly equivalent to the GDP of that year. The main land use/cover (LULC) type was woodland, cultivated land, and water area, which accounted for 57%, 15%, and 9% of Fuzhou's land area, respectively. Water area contributed the most to Fuzhou's CRS, with a contribution of over 60% in 2018, higher than woodland (12%), and cultivated land (13%). The CRS was lower in built-up areas and eastern farming areas. Between 2015 and 2018, the area of LULC change in Fuzhou was 1805.5 km2. The largest changes were cultivated land and wood land. The main land use transfer direction was between cultivated land and woodland, woodland and garden land, cultivated land and residential and industrial and mining land. The aggregated physical capacity of CRS changed by 6.74×1011 MJ, while the corresponding monetary value of 103.58 billion yuan. The CRS changes were concentrated in the central and western regions such as Minhou, Minqing, and Yongtai, and the western mountainous regions such as Luoyuan and Fuqing. The most drastic change of CRS was found in water area. The conversion of water areas produced extremely strong changes in CRS, much stronger than the effects of conversion of other LULC types.

生态系统服务是衔接生态系统功能和人类福利的桥梁,气候调节服务在生态系统服务中占有极其重要的地位。对气候调节服务发生的全过程进行评估,对科学开展生态系统服务评估具有重要意义。本研究以福州市为案例,开展地市尺度气候调节服务评估,分析气候调节服务在行政单元、地类尺度上的时空变化特征。结果表明: 2015、2018年,福州市气候调节服务总实物量分别为4.01×1012 MJ(价值量6139.44亿元,GDP为5618.08亿元)和4.66×1012 MJ(价值量7140.02亿元,GDP为7856.81亿元),气候调节服务价值大致与当年GDP相当。主要的土地利用/覆被类型是森林、耕地、水域,分别占福州市国土面积的57%、15%和9%;水域对福州市气候调节服务贡献最大,2018年贡献度超过60%,高于林地(12%)及耕地(13%)。建成区、东部农耕区域气候调节服务价值较低。2015、2018年,福州市土地利用/覆被变化面积为1805.5 km2,变化最大的用地类型是耕地、林地,主要的土地利用转移方向是耕地与林地、林地与园地、耕地与城镇村及工矿用地之间的转化;气候调节服务总实物量变化了6.74×1011 MJ,相应的价值变化量为1035.8亿元;气候调节服务变化集中在闽侯、闽清、永泰等中西部地区,以及罗源、福清等西部山区;水域的气候调节服务变化最剧烈,水域类型转化会产生极为强烈的气候调节服务变化,远高于其他用地类型转换的效果。.

Keywords: climate regulation service; evapotranspiration; land use/cover; monetary value; physical capacity.

MeSH terms

  • China
  • Cities
  • Conservation of Natural Resources* / methods
  • Ecosystem*
  • Humans
  • Water

Substances

  • Water