High-fat diet and alcohol induced-mice could cause colonic injury through molecular mechanisms of endogenous toxins

Toxicol Res (Camb). 2022 Jul 30;11(4):696-706. doi: 10.1093/toxres/tfac025. eCollection 2022 Aug.

Abstract

Due to the complexity and diverse causes, the pathological mechanism of diet-induced colonic injury and colitis remains unclear. In this study, we studied the effects of the combination of a high-fat diet (HFD) plus alcohol on colonic injury in mice. We found HFD plus alcohol treatment induced disturbance of the gut microbiota; increased the production of intestinal toxins lipopolysaccharide (LPS), indole, and skatole; destroyed the stability of the intestinal mucosa; and caused the colonic epithelial cells damage through the activation of nuclear factor (NF)-κB and aromatic hydrocarbon receptors (AhR) signaling pathways. To mimic the effect of HFD plus alcohol in vivo, NCM460 cells were stimulated with alcohol and oleic acid with/without intestinal toxins (LPS, indole, and skatole) in vitro. Combinative treatment of alcohol and oleic acid caused moderate damage on NCM460 cells, while combination with intestinal toxins induced serious cell apoptosis. Western blot data indicated that the activation of NF-κB and AhR pathways further augmented after intestinal toxins treatment in alcohol- and oleic acid-treated colonic cells. This study provided new evidence for the relationship between diet pattern and colonic inflammation, which might partly reveal the pathological development of diet-induced colon disease and the involvement of intestinal toxins.

Keywords: AhR signaling pathway; NF-κB signaling pathway; colonic injury; inflammation; intestinal toxins.