A large EEG dataset for studying cross-session variability in motor imagery brain-computer interface

Sci Data. 2022 Sep 1;9(1):531. doi: 10.1038/s41597-022-01647-1.

Abstract

In building a practical and robust brain-computer interface (BCI), the classification of motor imagery (MI) from electroencephalography (EEG) across multiple days is a long-standing challenge due to the large variability of the EEG signals. We collected a large dataset of MI from 5 different days with 25 subjects, the first open-access dataset to address BCI issues across 5 different days with a large number of subjects. The dataset includes 5 session data from 5 different days (2-3 days apart) for each subject. Each session contains 100 trials of left-hand and right-hand MI. In this report, we provide the benchmarking classification accuracy for three conditions, namely, within-session classification (WS), cross-session classification (CS), and cross-session adaptation (CSA), with subject-specific models. WS achieves an average classification accuracy of up to 68.8%, while CS degrades the accuracy to 53.7% due to the cross-session variability. However, by adaptation, CSA improves the accuracy to 78.9%. We anticipate this new dataset will significantly push further progress in MI BCI research in addressing the cross-session and cross-subject challenge.

Publication types

  • Dataset

MeSH terms

  • Algorithms
  • Brain-Computer Interfaces*
  • Electroencephalography*
  • Hand
  • Humans