SMM Behaviour of the Butterfly {CrIII 2 DyIII 2 } Pivalate Complex and Magneto-structurally Correlated Relaxation Thermal Barrier

Chemistry. 2022 Oct 21;28(59):e202201450. doi: 10.1002/chem.202201450. Epub 2022 Sep 1.

Abstract

We are reporting the synthesis, single-crystal X-ray structure characterization, and magnetic property investigations of the pivalate butterfly {CrIII 2 LnIII 2 } complexes with Ln= Gd and Dy and the isostructural Y(III) sample. We found an anti-ferromagnetic Cr(III)-Ln(III) exchange interaction, which, as previously observed in related Cr(III)/Ln(III) systems, plays a key role in suppressing quantum tunnelling of magnetization and enhances the SMM performance in the Dy(III) complex. In fact, a pure Orbach relaxation mechanism, with absence of QT regime, is observed with a thermal barrier of 50 cm-1 , leading to magnetization hysteresis opening, measured with a commercial magnetometer, up to 3.6 K with a coercive field of 2.9 T. Analysis of SMM behaviour in literature-known butterfly {CrIII 2 DyIII 2 } complexes, reveals the existence of a magneto-structural correlation between Ueff , the thermal barrier size, and the mean Cr-Dy bond distances. Moreover, a clear correlation is found for the thermal barrier magnitude and the maximum temperature hysteresis opening and coercive field.

Keywords: SMM; heteronuclear 3d/4 f; hysteresis; magneto structural correlation; tunneling suppression.