BAC cloning and heterologous expression of a giant biosynthetic gene cluster encoding antifungal neotetrafibricin in streptomyces rubrisoli

Front Bioeng Biotechnol. 2022 Aug 15:10:964765. doi: 10.3389/fbioe.2022.964765. eCollection 2022.

Abstract

Polyene natural products including nystatin A1, amphotericin B, ECO-02301, and mediomycin belong to a large family of valuable antifungal polyketide compounds typically produced by soil actinomycetes. A previous study (Park et al., Front. Bioeng. Biotechnol., 2021, 9, 692340) isolated Streptomyces rubrisoli Inha501 with strong antifungal activity and analyzed a large-sized biosynthetic gene cluster (BGC) of a linear polyene compound named Inha-neotetrafibricin (I-NTF) using whole genome sequencing and bioinformatics. In the present study, an entire I-NTF BGC (∼167 kb) was isolated through construction and screening of Streptomyces BAC library. Overexpression of the cloned I-NTF BGC in the wild-type S. rubrisoli Inha501 and its heterologous expression in S. lividans led to 2.6-fold and 2.8-fold increase in I-NTF yields, respectively. The qRT-PCR confirmed that the transcription levels of I-NTF BGC were significantly increased in both homologous and heterologous hosts containing the BAC integration of I-NTF BGC. In addition, the I-NTF aglycone-producing strains were constructed by a target-specific deletion of glycosyltransferase gene present in I-NTF BGC. A comparison of the in vitro biological activities of I-NTF and I-NTF aglycone confirmed that the rhamnose sugar motif of I-NTF plays a critical role in both antifungal and antibacterial activities. These results suggest that the Streptomyces BAC cloning of a large-sized natural product BGC is a valuable approach for natural product titer improvement and biological activity screening of natural product in actinomycetes.

Keywords: antibiotics; antifungals; genome mining; heterologous expression; streptomyces.