A preliminary mapping of QTL qsg5.1 controlling seed germination in melon (Cucumis melo L.)

Front Plant Sci. 2022 Aug 15:13:925081. doi: 10.3389/fpls.2022.925081. eCollection 2022.

Abstract

Melon (Cucumis melo L.) seed germination significantly affects its economic value. Cultivation of melon varieties with high germination ability and seedling vigor is beneficial in large-scale melon propagation. In this study, two melon genotypes differing in their germination ability, P5 with low and P10 with high germination ability, were used to identify the optimal seed germination conditions by evaluating different water immersion times and germination temperatures. The germination rate of the P5 and P10 parental genotypes and their segregating population, consisting of 358 F2:3 families, were evaluated for 2 years to identify their genetic basis. QTL analysis was performed on a high-density genetic map constructed using specific-locus amplified fragment sequencing (SLAF-seq). The germination rate of F1 and F2 populations treated with water immersion for 8 h at 28°C and measured at 48 h showed a normal distribution Genetic mapping carried out using the high-density genetic map revealed eight QTLs in chromosomes 2, 4, 5, 6, and 8 that control melon seed germination, of which 2020/2021-qsg5.1 was consistently significant in both years of experimentation. qsg5.1 explained 15.13% of the phenotypic variance with a LOD of 4.1. To fine map the candidate region of qsg5.1, eight cleaved amplified polymorphism sequence (CAPS) markers were used to construct a genetic map with another 421 F2 individual fruits. The major QTL qsg5.1 was located between SNP53 and SNP54 within a 55.96 Kb interval containing four genes. qRT-PCR gene expression analysis of the candidate genes showed that MELO3C031219.2 (Phosphorus transporter PHO-5) exhibited a significant difference in gene expression between the parental lines at 24, 32, and 48 h after germination, potentially being the underlying gene controlling melon seed germination. These results provide a theoretical basis for the molecular mechanisms controlling melon seed germination and can practically contribute to further improving germination to increase the propagation efficiency of commercial melon cultivars.

Keywords: QTL mapping; gene analysis; melon; phosphorus transporter PHO-5; seed germination.