Intratidal compliance of the lung and the total respiratory system

Physiol Meas. 2022 Sep 26;43(9). doi: 10.1088/1361-6579/ac8e4d.

Abstract

Objective.The worldwide rising quantity of surgeries and the corresponding need of mechanical ventilation means a rising number of patients are at risk of suffering from post-operative pulmonary complications. To prevent this risk, individual mechanics of the lung should be considered when setting the parameters of mechanical ventilation. Intratidal compliance analysis based on transpulmonal pressure would provide an estimate for individual lung mechanics. The downside of such measure, however, is its invasiveness. Accurate measurement requires recording of the esophageal pressure as surrogate for the actual pleural pressure. Measuring pressure at the airway opening is considerably easier, but the resulting mechanics of the respiratory system may not represent the actual lung mechanics in a straightforward fashion.Approach.In order to evaluate if the mechanics of the lungs are represented by analysis of the mechanics of the respiratory system we determined intratidal dynamic compliance-volume profiles of both in 23 lung-healthy mechanically ventilated patients undergoing elective surgery. We also compared the accuracy of the compliance profiles resulting from analysis of the total breath with those resulting from the analysis of inspiration data only.Main results.When the whole breath was analyzed 54.3%, and with only inspiration data 69.6%, of compliance profiles of the respiratory system matched those of the lung. With both approaches profiles of the lung and the respiratory system matched or deviated by only one neighboring step (75% whole breath, 91.3% inspiration only), and never contradicted each other.Significance.Compliance profiles calculated from volume and pressure data of the respiratory system are an adequate surrogate for the compliance profiles of the lungs of lung-healthy patients. Therefore, invasive assessment of esophageal pressure for achievement of intrapleural pressure is unnecessary. The compliance profiles based on only inspiratory data appear more sensitive for indicating intratidal derecruitment than those based on data of the whole breath.

Keywords: dynamical compliance profile; gliding-SLICE-method; lung-protective ventilation; mechanical ventilation.

MeSH terms

  • Humans
  • Lung Compliance
  • Lung*
  • Positive-Pressure Respiration* / methods
  • Respiration, Artificial
  • Respiratory Mechanics
  • Thorax