Ionic Liquid-Type Additive for Lithium Metal Batteries Operated in LiPF6 Based-Electrolyte Containing 2500 ppm H2O

ACS Appl Mater Interfaces. 2022 Sep 14;14(36):41103-41113. doi: 10.1021/acsami.2c12497. Epub 2022 Aug 31.

Abstract

The presence of trace amounts of moisture in the electrolyte can cause hydrolysis of LiPF6 and deteriorate the stability of lithium metal batteries. Herein, we propose a multifunctional ionic liquid-type additive constituting a 1-methyl-1-butyl pyrrolidium cation (Py14+) and an acetate anion (CH3COO-) (denoted as IL-AC in this study), which can effectively adsorb the trace moisture and thus prevent the hydrolysis of LiPF6 via intermolecular interactions. The prepared IL-AC can also remove HF to suppress the dissolution of transition metal ions from cathode materials through the reaction CH3COO- + HF → CH3COOH + F-. Compared with the baseline electrolyte, the contents of HF and transition metal ions are significantly lower in the electrolyte with 0.5% IL-AC. Upon the addition of 0.5% IL-AC additive and 2500 ppm H2O, the Li||NCM811 battery shows a capacity of 153.7 mAh g-1 after 300 cycles, while the Li||LNMO battery possesses stable capacity retention of 93.22% after 500 cycles at 1C and a Coulombic efficiency greater than 99%. Thus, this work provides a convenient and effective method to absorb trace amounts of water and remove HF in the electrolyte and provides a new path for the expensive and tedious process of water removal from the electrolyte in industry.

Keywords: H2O stabilizers; HF scavengers; LiPF6 based-electrolyte; additives; ionic liquid; lithium metal batteries.