Evidence for the growing importance of Eurasian local source to PAHs in the Arctic central basin

Sci Total Environ. 2022 Dec 10;851(Pt 2):158373. doi: 10.1016/j.scitotenv.2022.158373. Epub 2022 Aug 28.

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are traditionally considered to enter the Arctic Ocean through long-range transport. Arctic warming, especially sea ice retreat, will certainly increase the contribution from local source (such as river input and ice melting). However, this hypothesis remains poorly constrained for lack of quantitative evidence. Here PAHs in surface seawater (67°N-89°N, 152°E-177°E) and sea ice (82°N-89°N) were collected in the western Arctic in 2010. Dissolved concentrations of 15 PAHs (Σ15PAHs) in surface layer ice (26.2 to 49.8 ng/L) were one order of magnitude higher than the underlying seawater. The content of dissolved Σ15PAHs was significantly higher in the marginal ice zone than those in the Chukchi Sea shelf, and the dissolved Σ15PAHs concentration differed by nearly an order of magnitude in two closely adjacent sections in the basin area, which both showed high fraction of river water and sea ice meltwater. This pattern could be explained by the different local inputs from Eurasia and North America. This scenario was further visualized by ice back trajectories capturing significantly higher PAH signals from the Eurasian margin than those from North America and stable oxygen isotopic data finding a positive correlation of PAH levels with the fractions of river runoff and ice-melting water coming from the Eurasia. The PAHs budget of the Arctic Ocean was also dominated by local sources (river and ice melting) as inputs (76 %) and volatilization as outputs (47 %). This study reveals the importance of Eurasian local inputs in supplying PAHs to the central Arctic Ocean. Those processes, which have not been well recognized for PAHs previously, are expected to increase and will undermine global efforts to reduce exposure by remobilizing PAHs stored in permafrost and ice.

Keywords: Arctic Ocean; Climate change; Fresh water; Margin source; Mass balance.

MeSH terms

  • Arctic Regions
  • Environmental Monitoring
  • Oxygen Isotopes
  • Polycyclic Aromatic Hydrocarbons* / analysis
  • Seawater
  • Water

Substances

  • Polycyclic Aromatic Hydrocarbons
  • Oxygen Isotopes
  • Water