Cavity-containing aromatic oligoamide foldamers and macrocycles: progress and future perspectives

Org Biomol Chem. 2022 Sep 14;20(35):6962-6978. doi: 10.1039/d2ob01467j.

Abstract

As a major class of foldamers, aromatic oligoamide foldamers have attracted intense interest. The rigidity of aromatic residues and amide linkages allows the development of foldamers with readily predictable, stable conformations. Aromatic oligoamide foldamers having backbones fully constrained by intramolecular hydrogen bonds have attracted wide attention. Depending on their lengths, such foldamers adopt crescent or helical conformations with highly negative inner cavities. Cyclizing the backbone of the aromatic oligoamides affords the corresponding macrocycles which are characterised by persistent shapes and non-deformable inner cavities. With their defined, inner cavities, such aromatic oligoamide foldamers and macrocycles have served as hosts for cationic and polar guests, and as transmembrane channels for transporting ions and molecules. Recent synthetic progress resulted in the construction of multi-turn hollow helices that offer three-dimensional inner pores with adjustable depth. Reducing the number of backbone-constraining hydrogen bonds leads to oligoamides which, with their partially constrained backbones, undergo either solvent- or guest-dependent folding. One class of such aromatic olgioamide foldamders, which offer multiple backbone amide NH groups as hydrogen-bond donors, are designed to bind anions with adjustable affinities.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amides* / chemistry
  • Anions
  • Hydrogen Bonding
  • Molecular Conformation
  • Molecular Structure

Substances

  • Amides
  • Anions