Efficient attention-based deep encoder and decoder for automatic crack segmentation

Struct Health Monit. 2022 Sep;21(5):2190-2205. doi: 10.1177/14759217211053776. Epub 2021 Dec 19.

Abstract

Recently, crack segmentation studies have been investigated using deep convolutional neural networks. However, significant deficiencies remain in the preparation of ground truth data, consideration of complex scenes, development of an object-specific network for crack segmentation, and use of an evaluation method, among other issues. In this paper, a novel semantic transformer representation network (STRNet) is developed for crack segmentation at the pixel level in complex scenes in a real-time manner. STRNet is composed of a squeeze and excitation attention-based encoder, a multi head attention-based decoder, coarse upsampling, a focal-Tversky loss function, and a learnable swish activation function to design the network concisely by keeping its fast-processing speed. A method for evaluating the level of complexity of image scenes was also proposed. The proposed network is trained with 1203 images with further extensive synthesis-based augmentation, and it is investigated with 545 testing images (1280 × 720, 1024 × 512); it achieves 91.7%, 92.7%, 92.2%, and 92.6% in terms of precision, recall, F1 score, and mIoU (mean intersection over union), respectively. Its performance is compared with those of recently developed advanced networks (Attention U-net, CrackSegNet, Deeplab V3+, FPHBN, and Unet++), with STRNet showing the best performance in the evaluation metrics-it achieves the fastest processing at 49.2 frames per second.

Keywords: Image segmentation; computer vision; concrete crack segmentation; damage detection; deep learning; image analysis; image synthesis; pixel-level classification; real-time processing; semantic segmentation.