Ammonia Inhalants Enhance Psychophysiological Responses and Performance During Repeated High Intensity Exercise

Res Q Exerc Sport. 2023 Dec;94(4):1035-1041. doi: 10.1080/02701367.2022.2104447. Epub 2022 Aug 29.

Abstract

Purpose: Ammonia inhalants (NH3) are anecdotally used in competition by athletes for their purported stimulant effects. However, evidence on the efficacy of NH3 is conflicting, and little to no studies to date have investigated its effect on repeated exercise. The purpose of this study was to examine the effects of NH3 on psychophysiological responses and performance during repeated high-intensity exercise. Methods: In a counterbalanced crossover design, physically active females completed two repeated high-intensity sprint trials with a different treatment: Control (CON; water) or Ammonia Inhalants (NH3; 0.33 cc). For each trial, participants completed 3 × 15s Wingate anaerobic tests (WAnT) separated by 2 min of active recovery. Prior to each WAnT, participants took a single 3-s inhale of the corresponding treatment. After the succession of each WAnT, heart rate (HR) and rate of perceived exertion (RPE) were documented. Subjective feelings of alertness and "psyched up" energy were measured using a visual analog scale. Trials were separated by at least 48 hr. Results: The results indicate that over the WAnTs, mean power (p = .017) and peak power (p = .006) were significantly higher with NH3 compared to CON despite a lack of changes in fatigue index (p = .928). HR (p = .101) and RPE (p = .897) were not different with varying treatments. Perceived alertness (p = .010) and psyched-up energy (p = .002) were significantly higher with NH3 versus CON. Conclusion: These findings provide empirical support for the use of NH3 to improve repeated high-intensity exercise performance in females that may be underpinned by alterations in subjective alertness and energy.

Keywords: Anaerobic performance; aromatic; ergogenic aid; sprint.

MeSH terms

  • Ammonia*
  • Athletic Performance* / physiology
  • Exercise
  • Exercise Test
  • Fatigue
  • Female
  • Humans

Substances

  • Ammonia