Efficient and Durable Flame-Retardant Coatings on Wood Fabricated by Chitosan, Graphene Oxide, and Ammonium Polyphosphate Ternary Complexes via a Layer-by-Layer Self-Assembly Approach

ACS Omega. 2022 Aug 9;7(33):29369-29379. doi: 10.1021/acsomega.2c03624. eCollection 2022 Aug 23.

Abstract

An efficient and durable flame-retardant coating was constructed on wood via a layer-by-layer (LBL) self-assembly approach by using a chitosan (CS), graphene oxide (GO), and ammonium polyphosphate (APP) ternary flame-retardant system. Both scanning electron microscopy (SEM) characterization and Fourier transform infrared spectroscopy (FT-IR) analysis indicated that CS-GO and APP polyelectrolytes were successfully deposited on wood, and the deposition amount was increased with the numbers of the LBLs. Thermogravimetric analysis revealed that the CS-GO-APP coating could decrease the initial and maximum thermal decomposition temperature of the coated wood while increase the char residue significantly, which may be attributed to the earlier degradation of CS and APP and effective heat barrier of the incorporated GO, thus increasing the thermal stability of the modified wood. The limited oxygen index (LOI) and cone calorimeter analysis results of the pristine and coated wood indicated that the fire resistance was significantly improved after CS-GO-APP modification; when 15 BLs were deposited on the wood, the LOI was increased from pristine 22 to 42, while the heat release rate and total heat release decreased from pristine 105.50 kW/m2 and 62.43 MJ/m2 to 57.51 kW/m2 and 34.31 MJ/m2, respectively. What is more, the 24 h immersion experiments and abrasion tests proved the excellent durability of the deposited coating. Furthermore, the SEM images of the char residues after flaming test proved that the CS-GO-APP assembly coating could promote the char layer formation on the wood surface and block the heat and flame spread, thus protecting the wood from fire attacking.