Tonsillar Microbiome-Derived Lantibiotics Induce Structural Changes of IL-6 and IL-21 Receptors and Modulate Host Immunity

Adv Sci (Weinh). 2022 Oct;9(30):e2202706. doi: 10.1002/advs.202202706. Epub 2022 Aug 28.

Abstract

Emerging evidence emphasizes the functional impacts of host microbiome on the etiopathogenesis of autoimmune diseases, including rheumatoid arthritis (RA). However, there are limited mechanistic insights into the contribution of microbial biomolecules especially microbial peptides toward modulating immune homeostasis. Here, by mining the metagenomics data of tonsillar microbiome, a deficiency of the encoding genes of lantibiotic peptides salivaricins in RA patients is identified, which shows strong correlation with circulating immune cells. Evidence is provided that the salivaricins exert immunomodulatory effects in inhibiting T follicular helper (Tfh) cell differentiation and interleukin-21 (IL-21) production. Mechanically, salivaricins directly bind to and induce conformational changes of IL-6 and IL-21 receptors, thereby inhibiting the bindings of IL-6 and IL-21 to their receptors and suppressing the downstream signaling pathway. Finally, salivaricin administration exerts both prophylactic and therapeutic effects against experimental arthritis in a murine model of RA. Together, these results provide a mechanism link of microbial peptides-mediated immunomodulation.

Keywords: IL-6 and IL-21 receptor; lantibiotics; rheumatoid arthritis; salivaricins; tonsillar microbiome.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arthritis, Rheumatoid* / drug therapy
  • Arthritis, Rheumatoid* / metabolism
  • Bacteriocins* / therapeutic use
  • Humans
  • Interleukin-6 / metabolism
  • Mice
  • Microbiota*
  • Palatine Tonsil* / microbiology
  • Receptors, Interleukin-21* / metabolism
  • Receptors, Interleukin-6* / metabolism
  • T-Lymphocytes, Helper-Inducer / metabolism

Substances

  • Bacteriocins
  • Interleukin-6
  • Receptors, Interleukin-21
  • Receptors, Interleukin-6