Rev-erbs agonist SR9009 alleviates ischemia-reperfusion injury by heightening endogenous cardioprotection at onset of type-2 diabetes in rats: Down-regulating ferritinophagy/ferroptosis signaling

Biomed Pharmacother. 2022 Oct:154:113595. doi: 10.1016/j.biopha.2022.113595. Epub 2022 Aug 24.

Abstract

The complex progression of type-2 diabetes (T2DM) results in inconsistent findings on myocardial susceptibility to ischemia-reperfusion (IR). IR injuries in multiple organs interconnect with ferroptosis. Targeting Rev-erbs might limit ferroptosis, with increasing attention turning to the application of circadian medicine against IR injuries. However, whether the Rev-erbs agonist SR9009 could mitigate diabetic IR injury remains unknown. Here, we investigated the susceptibility to IR at onset of T2DM in rats and its potential association between SR9009 and ferritinophagy/ferroptosis signaling. Onset of T2DM model was induced with a high-fat diet and the intraperitoneal injection of a low dose of streptozotocin. Myocardial IR model was established as well. Rats' general characteristics, cardiac function, glycolipid profiles, serum biochemistry, apoptosis index (AI) and morphological histology were observed and analyzed. Western blot and immunofluorescence (IF) were employed to evaluate the expression of ferritinophagy/ferroptosis signaling and its co-localization. Glycolipid profiles and cardiac diastolic function were significantly impaired in diabetic rats. CK-MB, AI levels and ferritinophagy/ferroptosis-related proteins expression decreased towards myocardial IR in diabetic rats compared to non-diabetic rats'. The ferroptosis inducer Erastin up-regulated SOD, MDA, and AI levels, as well as the expression of ferritinophagy/ferroptosis-related proteins in diabetic rats towards IR. Treatment with SR9009 down-regulated the degree of myocardial injury and ferritinophagy/ferroptosis-related proteins expression compared to diabetic rats treated with or without Erastin. Onset of T2DM activated endogenous cardioprotection against the susceptibility to myocardial IR injury, and SR9009 exogenously enhanced this endogenous mechanism and alleviated myocardial IR injury at onset of T2DM by down-regulating ferritinophagy/ferroptosis signaling.

Keywords: Ferritinophagy/ferroptosis signaling; Myocardial ischemia-reperfusion injury; Onset of T2DM; SR9009; Susceptibility.

MeSH terms

  • Animals
  • Diabetes Mellitus, Type 2* / complications
  • Diabetes Mellitus, Type 2* / drug therapy
  • Ferroptosis*
  • Glycolipids
  • Myocardial Ischemia*
  • Myocardial Reperfusion Injury* / drug therapy
  • Myocardial Reperfusion Injury* / metabolism
  • Myocardial Reperfusion Injury* / prevention & control
  • Pyrrolidines
  • Rats
  • Thiophenes

Substances

  • Glycolipids
  • Pyrrolidines
  • SR9009
  • Thiophenes