Processing oxidatively damaged bases at DNA strand breaks by APE1

Nucleic Acids Res. 2022 Sep 9;50(16):9521-9533. doi: 10.1093/nar/gkac695.

Abstract

Reactive oxygen species attack the structure of DNA, thus altering its base-pairing properties. Consequently, oxidative stress-associated DNA lesions are a major source of the mutation load that gives rise to cancer and other diseases. Base excision repair (BER) is the pathway primarily tasked with repairing DNA base damage, with apurinic/apyrimidinic endonuclease (APE1) having both AP-endonuclease and 3' to 5' exonuclease (exo) DNA cleavage functions. The lesion 8-oxo-7,8-dihydroguanine (8-oxoG) can enter the genome as either a product of direct damage to the DNA, or through polymerase insertion at the 3'-end of a DNA strand during replication or repair. Importantly, 3'-8-oxoG impairs the ligation step of BER and therefore must be removed by the exo activity of a surrogate enzyme to prevent double stranded breaks and cell death. In the present study, we use X-ray crystallography to characterize the exo activity of APE1 on 3'-8-oxoG substrates. These structures support a unified APE1 exo mechanism that differs from its more canonical AP-endonuclease activity. In addition, through complementation of the structural data with enzyme kinetics and binding studies employing both wild-type and rationally designed APE1 mutants, we were able to identify and characterize unique protein: DNA contacts that specifically mediate 8-oxoG removal by APE1.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • DNA / chemistry
  • DNA Damage*
  • DNA Repair / genetics
  • DNA-(Apurinic or Apyrimidinic Site) Lyase / metabolism
  • Endonucleases* / metabolism

Substances

  • Endonucleases
  • DNA-(Apurinic or Apyrimidinic Site) Lyase
  • DNA