Thermodynamic Signatures of Genuinely Multipartite Entanglement

Phys Rev Lett. 2022 Aug 12;129(7):070601. doi: 10.1103/PhysRevLett.129.070601.

Abstract

The theory of bipartite entanglement shares profound similarities with thermodynamics. In this Letter we extend this connection to multipartite quantum systems where entanglement appears in different forms with genuine entanglement being the most exotic one. We propose thermodynamic quantities that capture a signature of genuineness in multipartite entangled states. Instead of entropy, these quantities are defined in terms of energy-particularly the difference between global and local extractable works (ergotropies) that can be stored in quantum batteries. Some of these quantities suffice as faithful measures of genuineness and to some extent distinguish different classes of genuinely entangled states. Along with scrutinizing properties of these measures we compare them with the other existing genuine measures, and argue that they can serve the purpose in a better sense. Furthermore, the generality of our approach allows us to define suitable functions of ergotropies capturing the signature of k nonseparability that characterizes qualitatively different manifestations of entanglement in multipartite systems.