Carbon Microfiber-Doped Smart Concrete Sensors for Strain Monitoring in Reinforced Concrete Structures: An Experimental Study at Various Scales

Sensors (Basel). 2022 Aug 15;22(16):6083. doi: 10.3390/s22166083.

Abstract

Concrete constructions need widespread monitoring for the control of their state of integrity during their service life. In particular, after critical events such as earthquakes, this type of structure may experience the formation and development of cracks and damage. A quick and affordable assessment of structural behavior is indicated to identify conditions of danger for users and the incipient collapse of structural elements. This work presents investigations on multifunctional concretes with self-sensing capabilities to carry out static and dynamic monitoring. The materials were produced by the addition of conductive carbon microfibers to the concrete matrix. Electrical and sensing tests were carried out on samples with small-, medium-, and full-scale dimensions. The tests demonstrated the good electrical and electromechanical properties of the proposed smart concrete sensors, which appear promising for their use in civil elements or structures. In particular, tests on real-scale beams demonstrated the capability of the material to monitor the dynamic behavior of full-scale structural elements.

Keywords: carbon microfibers; carbon-based fillers; concrete; dynamic monitoring; full-scale self-sensing elements; multifunctional smart materials; structural health monitoring.

Grants and funding

Project FISR 2019: “Eco Earth” (code 00245)—Italian Ministry of University and Research (MUR).