Effect of Transparent, Purple, and Yellow Shellac Microcapsules on Properties of the Coating on Paraberlinia bifoliolata Surface

Polymers (Basel). 2022 Aug 13;14(16):3304. doi: 10.3390/polym14163304.

Abstract

In order to explore the applicability of the waterborne coating with self-repairing microcapsules based on the surface of wood boards and specify the optimal range of microcapsule content in the coating, three different kinds of shellac microcapsules (transparent shellac, purple shellac, and yellow shellac) were embedded in a waterborne acrylic coating at 0, 1.5 wt.%, 3.0 wt.%, 4.5 wt.%, 6.0 wt.%, and 7.5 wt.%. The Beli wood (Paraberlinia bifoliolata) boards were then covered with self-repairing coatings to investigate the self-repairing coating's physical and chemical properties, aging resistance, and scratch repair abilities. The findings demonstrated that the chromatic difference and gloss of surface coatings on Beli wood boards were significantly influenced by the content of microcapsules. The optical characteristics and cold liquid resistance performance of the coating on Beli wood were enhanced when the microcapsule content was 3.0 wt.%. Additionally, the mechanical qualities of the coating with 3.0 wt.% transparent shellac microcapsules on Beli wood surface were better, with an H hardness, grade 2 adhesion, and 8 kg·cm of impact strength. The studies on scratch repairing and aging resistance indicated that microcapsules helped to slow down the coating's damage and retard aging. After a microcrack appeared, the waterborne coating with microcapsules on Beli wood's surface had the capacity to repair itself. After aging, the coating with 3.0 wt.% transparent shellac microcapsule on Beli wood boards had a better performance on the comprehensive properties, with a 28.9% light loss rate and a 6 kg·cm impact resistance. It also had a 25.0% repairing rate in scratch width after being damaged for 5 d. This study advances the development of self-healing waterborne coatings on the wood board with shellac microcapsules by examining the effects of shellac in various colors and shellac microcapsule content in waterborne coatings.

Keywords: Beli wood; microcapsule; self-repairing; shellac; waterborne coating.

Grants and funding

This project was partly supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_1098) and the Natural Science Foundation of Jiangsu Province (BK20201386).