Epidemic Characteristics of HIV Drug Resistance in Hefei, Anhui Province

Pathogens. 2022 Jul 31;11(8):866. doi: 10.3390/pathogens11080866.

Abstract

To study the characteristics of HIV pretreatment drug resistance (PDR) and acquired drug resistance (ADR) in Hefei, a cross-sectional survey was used to collect 816 samples from newly reported HIV infections from 2017 to 2020 and 127 samples from HIV infections with virological failure from 2018 to 2019 in Hefei. HIV drug resistance levels and drug resistance mutations were interpreted using the Stanford Drug Resistance Database. Molecular networks were constructed by HIV-TRACE. Among the newly reported infections in Hefei, the prevalence of PDR was 6.4% (52/816). The drug resistance mutations were mainly V179E/D/T (12.4%), K103N (1.3%), and V106I/M (1.3%). In addition, it was found that the CRF55_01B subtype had a higher drug resistance rate than other subtypes (p < 0.05). Molecular network analysis found that K103N and V179E may be transmitted in the cluster of the CRF55_01B subtype. The prevalence of ADR among HIV infections with virological failure was 38.6% (49/127), and the drug resistance mutations were mainly M184V (24.4%), K103N/S (15.7%), Y181C (11.0%), G190S/A/E (10.2%), and V106M/I (10.2%). The molecular network was constructed by combining HIV infections with virological failure and newly reported infections; M184V and Y181C may be transmitted between them. The chi-square trend test results indicated that the higher the viral load level, the greater the number of newly reported infections linked to the infections with virological failure in the molecular network. In conclusion, interventions should focus on infections of the CRF55_01B subtype to reduce the transmission of drug-resistant strains. However, improving the treatment effect of HIV infections is beneficial for reducing the second-generation transmission of HIV.

Keywords: HIV; drug resistance; molecular network; transmission.