Peripheral-Free Calibration Method for Redundant IMUs Based on Array-Based Consumer-Grade MEMS Information Fusion

Micromachines (Basel). 2022 Jul 29;13(8):1214. doi: 10.3390/mi13081214.

Abstract

The MEMS array-based inertial navigation module (M-IMU) reduces the measurement singularities of MEMS sensors by fusing multiple data processing to improve its navigation performance. However, there are still existing random and fixed errors in M-IMU navigation. The calibration method calibrates the fixed error parameters of M-IMU to further improve navigation accuracy. In this paper, we propose a low-cost and efficient calibration method to effectively estimate the fixed error parameters of M-IMU. Firstly, we manually rotate the M-IMU in multiple sets of different attitudes (stationary), then use the LM-calibration algorithm to optimize the cost function of the corresponding sensors in different intervals of the stationary-dynamic filter separation to obtain the fixed error parameters of MEMS, and finally, the global fixed error parameters of the M-IMU are calibrated by adaptive support fusion of the individual MEMS fixed error parameters based on the benchmark conversion. A comparison of the MEMS calibrated separately by the fusion-calibration algorithm and the LM-calibration algorithm verified that the calibrated MEMS array improved the measurement accuracy by about 10 db and reduced the dispersion of the output data by about 8 db compared to the individual MEMS in a multi-dimensional test environment, indicating the robustness and feasibility of the fusion calibration algorithm.

Keywords: LM-calibration algorithm; MEMS array; fixed error; fusion-calibration algorithm.