A Winter-to-Summer Transition of Bacterial and Archaeal Communities in Arctic Sea Ice

Microorganisms. 2022 Aug 10;10(8):1618. doi: 10.3390/microorganisms10081618.

Abstract

The Arctic is warming 2-3 times faster than the global average, leading to a decrease in Arctic sea ice extent, thickness, and associated changes in sea ice structure. These changes impact sea ice habitat properties and the ice-associated ecosystems. Sea-ice algal blooms provide various algal-derived carbon sources for the bacterial and archaeal communities within the sea ice. Here, we detail the transition of these communities from winter through spring to early summer during the Norwegian young sea ICE (N-ICE2015) expedition. The winter community was dominated by the archaeon Candidatus Nitrosopumilus and bacteria belonging to the Gammaproteobacteria (Colwellia, Kangiellaceae, and Nitrinocolaceae), indicating that nitrogen-based metabolisms, particularly ammonia oxidation to nitrite by Cand. Nitrosopumilus was prevalent. At the onset of the vernal sea-ice algae bloom, the community shifted to the dominance of Gammaproteobacteria (Kangiellaceae, Nitrinocolaceae) and Bacteroidia (Polaribacter), while Cand. Nitrosopumilus almost disappeared. The bioinformatically predicted carbohydrate-active enzymes increased during spring and summer, indicating that sea-ice algae-derived carbon sources are a strong driver of bacterial and archaeal community succession in Arctic sea ice during the change of seasons. This implies a succession from a nitrogen metabolism-based winter community to an algal-derived carbon metabolism-based spring/ summer community.

Keywords: Arctic sea ice; N-ICE2015; Nitrosopumilus; arctic microbes; biodiversity; microbial ecology; sea-ice algal bloom.

Grants and funding

The N-ICE2015 expedition was funded by the former Centre for Ice, Climate, and Ecosystems (ICE) at the Norwegian Polar Institute. This work was funded by the ERANet LAC project number ELAC2014/DCC-0178 and the Research Council of Norway through the CAVEICE (number 256162) and Boom or Bust (number 244646) projects.