Study on the Aging Behavior of an Ultra-High Molecular Weight Polyethylene Fiber Barrier Net in a Marine Environment

Materials (Basel). 2022 Aug 15;15(16):5599. doi: 10.3390/ma15165599.

Abstract

In the present work, the performance of ultra-high molecular weight polyethylene (UHMWPE) barrier nets in marine environments is investigated by Fourier transform infrared spectroscopy, thermogravimetry, scanning electron microscopy, and tensile experiments. The chemical, morphological, thermal stability, and strength changes after aging in salt spray, hygrothermal, and ultraviolet (UV) environments are characterized. An environmental spectrum is designed to simulate a real service environment and predict the service life of UHMWPE. The results show that UV energy can activate UHMWPE molecules and lead to chain breaking, which lowers the breaking strength more efficiently than salt spray. In a hygrothermal environment, the UHMPE fibers bond into clumps, which causes a slight increase in breaking strength after the initial rapid decrease with aging time. The acceleration ratio of the environmental spectrum increases with increasing aging time, which may be caused by the cross-linking and degradation of macromolecular chains in the material. The environmental spectrum given by this work can be used to evaluate performance and predict the service life of UHMWPE barrier nets in marine environments.

Keywords: environmental spectrum; hygrothermal; salt spray; ultra-high molecular weight polyethylene; ultraviolet.

Grants and funding

This research received no external funding.