MYB Transcription Factors Becoming Mainstream in Plant Roots

Int J Mol Sci. 2022 Aug 17;23(16):9262. doi: 10.3390/ijms23169262.

Abstract

The function of the root system is crucial for plant survival, such as anchoring plants, absorbing nutrients and water from the soil, and adapting to stress. MYB transcription factors constitute one of the largest transcription factor families in plant genomes with structural and functional diversifications. Members of this superfamily in plant development and cell differentiation, specialized metabolism, and biotic and abiotic stress processes are widely recognized, but their roles in plant roots are still not well characterized. Recent advances in functional studies remind us that MYB genes may have potentially key roles in roots. In this review, the current knowledge about the functions of MYB genes in roots was summarized, including promoting cell differentiation, regulating cell division through cell cycle, response to biotic and abiotic stresses (e.g., drought, salt stress, nutrient stress, light, gravity, and fungi), and mediate phytohormone signals. MYB genes from the same subfamily tend to regulate similar biological processes in roots in redundant but precise ways. Given their increasing known functions and wide expression profiles in roots, MYB genes are proposed as key components of the gene regulatory networks associated with distinct biological processes in roots. Further functional studies of MYB genes will provide an important basis for root regulatory mechanisms, enabling a more inclusive green revolution and sustainable agriculture to face the constant changes in climate and environmental conditions.

Keywords: MYB transcription factors; biotic and abiotic stresses; development; plant roots.

Publication types

  • Review

MeSH terms

  • Gene Expression Regulation, Plant*
  • Genes, myb
  • Phylogeny
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Plant Roots / genetics
  • Plant Roots / metabolism
  • Stress, Physiological / genetics
  • Transcription Factors* / genetics
  • Transcription Factors* / metabolism

Substances

  • Plant Proteins
  • Transcription Factors