Reduction of Emphysema Severity by Human Umbilical Cord-Derived Mesenchymal Stem Cells in Mice

Int J Mol Sci. 2022 Aug 10;23(16):8906. doi: 10.3390/ijms23168906.

Abstract

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality in chronic lung disease patients throughout the world. Mesenchymal stem cells (MSCs) have been shown to regulate immunomodulatory, anti-inflammatory, and regenerative responses. However, the effects of human-umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) on the lung pathophysiology of COPD remain unclear. We aimed to investigate the role of hUC-MSCs in emphysema severity and Yes-associated protein (Yap) phosphorylation (p-Yap) in a porcine-pancreatic-elastase (PPE)-induced emphysema model. We observed that the emphysema percentages (normalized to the total lung volume) measured by chest computed tomography (CT) and exercise oxygen desaturation were significantly reduced by hUC-MSCs at 107 cells/kg body weight (BW) via intravenous administration in emphysematous mice (p < 0.05). Consistently, the emphysema index, as assessed by the mean linear intercept (MLI), significantly decreased with hUC-MSC administration at 3 × 106 and 107 cells/kg BW (p < 0.05). Changes in the lymphocytes, monocytes, and splenic cluster of differentiation 4-positive (CD4+) lymphocytes by PPE were significantly reversed by hUC-MSC administration in emphysematous mice (p < 0.05). An increasing neutrophil/lymphocyte ratio was reduced by hUC-MSCs at 3 × 106 and 107 cells/kg BW (p < 0.05). The higher levels of tumor necrosis factor (TNF)-α, keratinocyte chemoattractant (KC), and lactate dehydrogenase (LDH) in bronchoalveolar lavage fluid (BALF) were significantly decreased by hUC-MSC administration (p < 0.05). A decreasing p-Yap/Yap ratio in type II alveolar epithelial cells (AECII) of mice with PPE-induced emphysema was significantly increased by hUC-MSCs (p < 0.05). In conclusion, the administration of hUC-MSCs improved multiple pathophysiological features of mice with PPE-induced emphysema. The effectiveness of the treatment of pulmonary emphysema with hUC-MSCs provides an essential and significant foundation for future clinical studies of MSCs in COPD patients.

Keywords: COPD; emphysema; hippo pathway; inflammation; lungs.

MeSH terms

  • Animals
  • Emphysema* / metabolism
  • Humans
  • Mesenchymal Stem Cell Transplantation*
  • Mesenchymal Stem Cells* / metabolism
  • Mice
  • Pancreatic Elastase / metabolism
  • Pulmonary Disease, Chronic Obstructive* / pathology
  • Pulmonary Emphysema* / metabolism
  • Pulmonary Emphysema* / therapy
  • Swine
  • Umbilical Cord

Substances

  • Pancreatic Elastase