Plasma Proteomic Profiling Reveals the Regulatory Factors of Milk Protein Synthesis in Holstein Cows

Biology (Basel). 2022 Aug 19;11(8):1239. doi: 10.3390/biology11081239.

Abstract

Milk protein concentrations in dairy cows are considered to be related to some plasma biomolecules. However, the characteristics of plasma biomolecules in dairy cows with different long-term milk protein concentrations are not fully elucidated. This study was conducted to understand the mechanism of plasma proteins in milk protein synthesis by the comparative analysis of the plasma proteomics of cows with different milk protein concentrations. Three groups of Holstein cows (per group = 10) with low (LMP), medium (MMP), and high long-term milk protein concentrations (HMP) were selected for the experiment to determine plasma hormones, biochemical parameters, and proteome. We found that HMP cows had higher concentrations of plasma insulin-like growth factor 1 (IGF-1), glucose, prolactin, insulin, and growth hormone than LMP cows. Additionally, plasma proteomic identified 91 differential proteins, including IGF-1 between the LMP and HMP groups, and the mTOR pathway was enriched. In vitro, IGF-1 treatment increased β-casein expression and simultaneously activated S6K1 and mTOR phosphorylation in bovine mammary epithelial cells. Taken together, these data demonstrate the differences in plasma hormones, biochemical parameters, and proteome of cows with different milk protein concentrations and indicate that IGF-1 enhanced milk protein synthesis, associated with activation of the mTOR signaling pathway.

Keywords: bovine mammary epithelial cells; insulin-like growth factor 1; milk protein; plasma proteomic.