Isoliquiritigenin Nanoemulsion Preparation by Combined Sonication and Phase-Inversion Composition Method: In Vitro Anticancer Activities

Bioengineering (Basel). 2022 Aug 10;9(8):382. doi: 10.3390/bioengineering9080382.

Abstract

Isoliquiritigenin (ILQ) has a number of biological activities such as antitumor and anti-inflammatory effects. However, biomedical applications of ILQ are impeded by its poor aqueous solubility. Therefore, in this research, we prepared a novel ILQ-loaded nanoemulsion, i.e., ILQ-NE, which consisted of Labrafil® M 1944 CS (oil), Cremophor® EL (surfactant), ILQ, and phosphate-buffered saline, by employing a combined sonication (high-energy) and phase-inversion composition (low-energy) method (denoted as the SPIC method). The ILQ-NE increased the ILQ solubility ~1000 times more than its intrinsic solubility. It contained spherical droplets with a mean diameter of 44.10 ± 0.28 nm and a narrow size distribution. The ILQ loading capacity was 4%. The droplet size of ILQ-NE remained unchanged during storage at 4 °C for 56 days. Nanoemulsion encapsulation effectively prevented ILQ from degradation under ultraviolet light irradiation, and enhanced the ILQ in vitro release rate. In addition, ILQ-NE showed higher cellular uptake and superior cytotoxicity to 4T1 cancer cells compared with free ILQ formulations. In conclusion, ILQ-NE may facilitate the biomedical application of ILQ, and the SPIC method presents an attractive avenue for bridging the merits and eliminating the shortcomings of traditional high-energy methods and low-energy methods.

Keywords: isoliquiritigenin; nanoemulsion; phase-inversion composition (PIC); sonication.