Functional Mobility Training with a Powered Knee and Ankle Prosthesis

Front Rehabil Sci. 2022:3:790538. doi: 10.3389/fresc.2022.790538. Epub 2022 Apr 11.

Abstract

Limb loss at the transfemoral or knee disarticulation level results in a significant decrease of mobility. Powered lower limb prostheses have the potential to provide increased functional mobility and return individuals to activities of daily living that are limited due to their amputation. Providing power at the knee and/or ankle, new and innovative training is required for the amputee and the clinician to understand the capabilities of these advanced devices. This protocol for functional mobility training with a powered knee and ankle prosthesis was developed while training 30 participants with a unilateral transfemoral or knee disarticulation amputation at a nationally ranked physical medicine and rehabilitation research hospital. Participants received instruction for level ground walking, stair climbing, incline walking and sit to stand transitions. A therapist provided specific training for each mode including verbal, visual and tactile cueing along with patient education on the functionality of the device. The primary outcome measure was the ability of each participant to demonstrate independence with walking and sit to stand transitions along with modified independence for stair climbing and incline walking due to use of a handrail. Every individual was successful in comfortable ambulation of level ground walking and 27 out of 30 were successful in all other functional modes after participating in 1-3 sessions of 1-2 hours in length (3 terminated their participation prior to attempting all activities). As these prosthetic devices continue to advance, therapy techniques must advance as well and this paper serves as an education on new training techniques that can provide amputees with the best possible tools to take advantage of these powered devices in order to achieve their desired clinical outcomes.

Keywords: above-knee amputation; ambulation; artificial leg; physical therapy; rehabilitation; robotic prosthesis.