Galnt17 loss-of-function leads to developmental delay and abnormal coordination, activity, and social interactions with cerebellar vermis pathology

Dev Biol. 2022 Oct:490:155-171. doi: 10.1016/j.ydbio.2022.08.002. Epub 2022 Aug 21.

Abstract

GALNT17 encodes a N-acetylgalactosaminyltransferase (GalNAc-T) protein specifically involved in mucin-type O-linked glycosylation of target proteins, a process important for cell adhesion, cell signaling, neurotransmitter activity, neurite outgrowth, and neurite sensing. GALNT17, also known as WBSCR17, is located at the edge of the Williams-Beuren Syndrome (WBS) critical region and adjacent to the AUTS2 locus, genomic regions associated with neurodevelopmental phenotypes that are thought to be co-regulated. Although previous data have implicated Galnt17 in neurodevelopment, the in vivo functions of this gene have not been investigated. In this study, we have analyzed behavioral, brain pathology, and molecular phenotypes exhibited by Galnt17 knockout (Galnt17-/-) mice. We show that Galnt17-/- mutants exhibit developmental neuropathology within the cerebellar vermis, along with abnormal activity, coordination, and social interaction deficits. Transcriptomic and protein analysis revealed reductions in both mucin type O-glycosylation and heparan sulfate synthesis in the developing mutant cerebellum along with disruption of pathways central to neuron differentiation, axon pathfinding, and synaptic signaling, consistent with the mutant neuropathology. These brain and behavioral phenotypes and molecular data confirm a specific role for Galnt17 in brain development and suggest new clues to factors that could contribute to phenotypes in certain WBS and AUTS2 syndrome patients.

Keywords: Motor coordination; Mouse mutation; O-glycosylation; Social behavior; Vermis development.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Brain / metabolism
  • Cerebellar Vermis* / metabolism
  • Cerebellum / metabolism
  • Mice
  • Mucins / metabolism
  • N-Acetylgalactosaminyltransferases* / metabolism
  • Polypeptide N-acetylgalactosaminyltransferase
  • Proteins / metabolism
  • Social Interaction

Substances

  • Mucins
  • N-Acetylgalactosaminyltransferases
  • Proteins