The role of Co2+cation addition in enhancing the AC heat induction power of (CoxMn1-x)Fe2O4superparamagnetic nanoparticles

Nanotechnology. 2022 Sep 9;33(48). doi: 10.1088/1361-6528/ac8c4b.

Abstract

The physical role of magnetically semi-hard Co2+cation addition in enhancing the AC heat induction temperature (TAC) or specific loss power (SLP) of solid (CoxMn1-x)Fe2O4superparamagnetic iron oxide nanoparticles (SPIONPs) was systematically investigated at the biologically safe and physiologically tolerable range ofHAC(HAC,safe= 1.12 × 109A m-1s-1,fappl= 100 kHz,Happl= 140 Oe (11.2 A m-1)) to demonstrate which physical parameter would be the most critical and dominant in enhancing theTAC(SLP) of SPIONPs. According to the experimentally and theoretically analyzed results, it was clearly demonstrated that the enhancement of magnetic anisotropy (Ku)-dependent AC magnetic softness including the Néel relaxation time constantτN(≈τeff, effective relaxation time constant), and its dependent out-of-phase magnetic susceptibilityχ″primarily caused by the Co2+cation addition is the most dominant parameter to enhance theTAC(SLP). This clarified result strongly suggests that the development of new design and synthesis methods enabling to significantly enhance theKuby improving the crystalline anisotropy, shape anisotropy, stress (magnetoelastic) anisotropy, thermally-induced anisotropy, and exchange anisotropy is the most critical to enhance theTAC(SLP) of SPIONPs at theHAC,safe(particularly at the lowerfappl< 120 kHz) for clinically safe magnetic nanoparticle hyperthermia.

Keywords: AC heat induction power; AC magnetic softness; magnetic anisotropy; physical role of Co2+ cation; superparamagnetic nanoparticles.