The Effect of Different Light-curing Units and Tip Distances on the Polymerization Efficiency of Bulk-fill Materials

Oper Dent. 2022 Jul 1;47(4):E197-E210. doi: 10.2341/20-282-L.

Abstract

Problem statement: In an average class II posterior preparation, the curing light tip is placed at a distance from the restoration surface that far exceeds the 1-mm manufacturer's recommendation. This distance can have potentially detrimental effects on the curing efficiency of the light-curing unit as well as the properties of the resin-based composite restoration, especially at the bottom of the cavity preparation.

Purpose: The purpose of this study was to evaluate the effects of various types of light-curing units (LCUs) and the different curing distances on the degree of conversion (DC) and the surface hardness of bulk-fill composite materials.

Methods and materials: A total of 390 specimens of three resin-based composites (RBCs) were fabricated. Two bulk-fill RBCs, including Filtek Bulk Fill Posterior (3M ESPE GmbH, Seefeld, Germany) and Tetric N-Ceram Bulk Fill (Ivoclar Vivadent AG, Schaan, Liechtenstein), as well as a Filtek Z350 XT nano-filled composite (3M ESPE GmbH, Seefeld, Germany), were utilized. In this study, the Vickers microhardness number (VMN) and the DC were evaluated at 2 and 4 mm thicknesses. Polymerization for 20 seconds was performed using two high-power light-curing units, namely the polywave Bluephase G2 light-emitting diode (LED) LCU (Ivoclar Vivadent AG, Schaan, Liechtenstein) and the monowave Elipar Deep Cure S LED LCU (3M Oral Care, St Paul, MN, USA) at 0, 2, and 4 mm distance between the curing tip and the RBC surface. The results were analyzed using the two-way analysis of variance method. Scheffe's post-hoc multiple comparison tests were used to determine significant differences between the materials, the LCU, and the tip distances.

Results: The highest DC (70.17) was shown by Filtek Bulk Fill Posterior at a distance of 0 mm, whereas the lowest DC (45.99) was measured for the conventional Filtek Z350 XT at a 4 mm distance. Moreover, higher VMNs were shown by Filtek Bulk Fill and Filtek Z350 composites at 0 mm distance than by the Tetric N-Ceram Bulk Fill composite material when cured with a Bluephase G2 LCU. For all materials, a significant decrease in the DC and mean VMN values was observed at a 4 mm distance in comparison with 0 and 2 mm distances.

Conclusions: The DC and VMN values among the studied bulk fill materials were more significantly affected by the material composition and curing protocols. The increased distance from the light tip has a detrimental effect on the mechanical properties of composite resin materials. Significant differences were observed in the curing efficiency of the two LCUs investigated.

MeSH terms

  • Composite Resins
  • Curing Lights, Dental*
  • Dental Materials
  • Hardness
  • Light-Curing of Dental Adhesives* / methods
  • Materials Testing
  • Polymerization
  • Surface Properties

Substances

  • Composite Resins
  • Dental Materials