Will microfluidics enable functionally integrated biohybrid robots?

Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2200741119. doi: 10.1073/pnas.2200741119. Epub 2022 Aug 24.

Abstract

The next robotics frontier will be led by biohybrids. Capable biohybrid robots require microfluidics to sustain, improve, and scale the architectural complexity of their core ingredient: biological tissues. Advances in microfluidics have already revolutionized disease modeling and drug development, and are positioned to impact regenerative medicine but have yet to apply to biohybrids. Fusing microfluidics with living materials will improve tissue perfusion and maturation, and enable precise patterning of sensing, processing, and control elements. This perspective suggests future developments in advanced biohybrids.

Keywords: bioactuators; biohybrid robotics; microfluidics; soft robotics; tissue engineering.

MeSH terms

  • Biomimetic Materials*
  • Cells*
  • Microfluidics*
  • Robotics*