Highly efficient oxygen evolution reaction enabled by phosphorus-boron facilitating surface reconstruction of amorphous high-entropy materials

J Colloid Interface Sci. 2022 Dec 15;628(Pt B):242-251. doi: 10.1016/j.jcis.2022.08.068. Epub 2022 Aug 17.

Abstract

Efficient, cost-effective and durable electrocatalysts are highly required to overcome the slow kinetics and high overpotential of oxygen evolution reaction (OER). Here we report a series of novel amorphous high-entropy borophosphate catalysts FeCoNiMBPOx (M = Mg, Al, Cr, Mn) prepared by a low-temperature reduction method. The leaching of boron and phosphorus accelerates the surface self-reconstruction of FeCoNiMnBPOx, and the subsequently formed high-oxidation-state metal-OOH species is beneficial to improve the catalyst performance. Moreover, the unique amorphous structure with abundant defects provides more active sites for OER. As a return, all the samples exhibit excellent OER activity and stability. Among them, FeCoNiMnBPOx with the highest conductivity and the largest electrochemical active surface area (ECSA) exhibits the best electrocatalytic performance, requiring only low overpotentials of 248 mV and 294 mV to reach current densities of 10 mA cm-2 and 100 mA cm-2, respectively. This sample also shows an exceptional durability for 50 h without a significant increase in potential, which is superior to that of the benchmark RuO2 electrocatalyst. The combination of the adsorbate evolution mechanism (AEM) and the lattice oxygen-mediated mechanism (LOM) are responsible for the excellent catalyst performance. This work provides new ideas for designing high-activity multiple-element catalysts.

Keywords: Borophosphate; Electrocatalyst; High entropy; Oxygen evolution reaction; Surface reconstruction.