Heat waves rather than continuous warming exacerbate impacts of nutrient loading and herbicides on aquatic ecosystems

Environ Int. 2022 Oct:168:107478. doi: 10.1016/j.envint.2022.107478. Epub 2022 Aug 18.

Abstract

Submerged macrophytes are vital components in shallow aquatic ecosystems, but their abundances have declined globally. Shading by periphyton and phytoplankton/turbidity plays a major role in this decline, and the competing aquatic primary producers are subject to the complex influence of multiple stressors such as increasing temperatures, nutrient loading and herbicides. Their joint impact has rarely been tested and is difficult to predict due to potentially opposing effects on the different primary producers, their interactions and their grazers. Here, we used 48 mesocosms (2500 L) to simulate shallow lakes dominated by two typical submerged macrophytes, bottom-dwelling Vallisneria denseserrulata and canopy-forming Hydrilla verticillata, and associated food web components. We applied a combination of nutrient loading, continuous warming, heat waves and glyphosate-based herbicides to test how these stressors interactively impact the growth of submerged macrophytes, phytoplankton and periphyton as competing primary producers. Warming or heat waves alone did not affect phytoplankton and periphyton abundance, but negatively influenced the biomass of V. denseserrulata. Nutrient loading alone increased phytoplankton biomass and water turbidity and thus negatively affected submerged macrophyte biomass, particularly for V. denseserrulata, by shading. Glyphosate alone did not affect biomass of each primary producer under ambient temperatures. However, heat waves facilitated phytoplankton growth under combined nutrient loading and glyphosate treatments more than continuous warming. As a consequence, H. verticillata biomass was lowest under these conditions indicating the potential of multiple stressors for macrophyte decline. Our study demonstrated that multiple stressors interactively alter the biomass of primary producers and their interactions and can eventually lead to a loss of macrophyte communities and shift to phytoplankton dominance. These results show the risks in shallow lakes and ponds in agricultural landscapes and underline the need for multiple stressor studies as a base for their future management.

Keywords: Climate change; Eutrophication; Macrophyte; Multiple stressors; Periphyton; Phytoplankton.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomass
  • Ecosystem
  • Eutrophication
  • Herbicides* / toxicity
  • Hot Temperature
  • Hydrocharitaceae*
  • Lakes
  • Nutrients
  • Phytoplankton

Substances

  • Herbicides