NPPA/atrial natriuretic peptide is an extracellular modulator of autophagy in the heart

Autophagy. 2023 Apr;19(4):1087-1099. doi: 10.1080/15548627.2022.2115675. Epub 2022 Sep 6.

Abstract

NPPA/atrial natriuretic peptide (natriuretic peptide type A) exerts critical pleiotropic effects in the cardiovascular system, limiting cardiomyocyte hypertrophy and death, reducing cardiac fibrosis and promoting vascular integrity. However, the molecular mechanisms underlying these beneficial effects still need to be clarified. We demonstrated for the first time that macroautophagy/autophagy is involved in the local protective effects of NPPA in cardiomyocytes (CMs), both in vitro and in vivo. Exogenous NPPA rapidly activates autophagy in CMs through NPR1/type A natriuretic peptide receptor and PRKG/protein kinase G signaling and also increases cardiac autophagy in mice. Remarkably, endogenous NPPA is secreted by CMs in response to glucose deprivation or hypoxia, thereby stimulating autophagy through autocrine/paracrine mechanisms. NPPA preserves cell viability and reduces hypertrophy in response to stress through autophagy activation. In vivo, we found that Nppa knockout mice undergoing ischemia-reperfusion (I/R) show increased infarct size and reduced autophagy. Reactivation of autophagy by Tat-Beclin D11 limits I/R injury. We also found that the protective effects of NPPA in reducing infarct size are abrogated in the presence of autophagy inhibition. Mechanistically, we found that NPPA stimulates autophagy through the activation of TFEB (transcription factor EB). Our data suggest that NPPA is a novel extracellular regulator of autophagy in the heart.

Keywords: Atrial natriuretic peptide; autophagy; cardiomyocytes; ischemia-reperfusion; transcription factor EB.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Atrial Natriuretic Factor*
  • Autophagy*
  • Hypertrophy
  • Mice
  • Mice, Knockout
  • Myocytes, Cardiac

Substances

  • Atrial Natriuretic Factor
  • N-propionylprocainamide

Grants and funding

This work was supported by grants from the Italian Ministry of Health to S.Ru., M.V., and S.S. (Ricerca corrente; GR-2013-02355401), Italian Ministry of Research to SS (PRIN_2017N8K7S2_002; PRIN_20202020YRETTX), Pasteur Institute-Cenci Bolognetti Foundation to SS, University Sapienza to S.Ru. (project number RM1181641BF8C865). We thank “Leducq Transatlantic Networks of Excellence: Modulating autophagy to treat cardiovascular disease (15CBD04)” for the partial support and all its members for the advices and critical discussion.